






result of AUC ¼ 0.74 (95% CI, 0.65–0.84). Malignant versus
negativeþ recalled-benign had AUC¼ 0.70 (95%CI, 0.60–0.80).
Triple classification (malignant vs. negative vs. recalled-benign)
had an average AUC of 0.66.

Results on DDSM dataset
Figure 2 shows the results on theDDSMdataset.We foundAUC

ranged from 0.77 to 0.90. Negative versus recalled-benign and
malignant versus negative showed the best performances with
AUC of 0.96 (95%CI, 0.94–0.98) and 0.93 (95%CI, 0.89–0.97),
respectively. Triple classification had an average AUC of 0.85.
Recalled-benign versus malignant þ negative showed the next
best performance at 0.83 (95% CI, 0.77–0.89). Malignant versus

recalled-benign and malignant versus negativeþ recalled-benign
showed similar performance with AUCs of 0.78 (95% CI, 0.71–
0.85) and 0.77 (95% CI, 0.70–0.84), respectively.

Results on combined FFDM and DDSM datasets
Figure 3 shows performance results when the two datasets were

combined (mixed together) for both training and testing. AUC
ranged from 0.76 to 0.91. Best performance was observed for
negative versus recalled-benign (AUC ¼ 0.91; 95% CI, 0.89–
0.94). With an AUC of 0.84 (95% CI, 0.79–0.88), malignant
versus negative had second best performance, followed by
malignant versus negative versus recalled-benign with an average
AUC of 0.79, then recalled-benign versus malignant þ negative

Figure 2.

Performance results for deep learning CNN models for classification on the DDSM dataset. Left, ROC curves for the binary classification scenarios and
corresponding AUCs. Right, ROC curves for the triple-class classification scenario and averaged AUC.

Figure 3.

Performance results for deep learning CNN models for classification using combined FFDM and DDSM datasets for training and testing. (Left) ROC curves
for the binary classification scenarios and corresponding AUCs. Right, ROC curves for the triple-class classification scenario and averaged AUC.
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(AUC ¼ 0.78; 95% CI, 0.73–0.83). Both malignant versus
recalled-benign and malignant versus negativeþ recalled-benign
had anAUCof 0.76 (95%CI, 0.70–0.82). It is observed that when
FFDM andDDSMwere combined for training and testing, overall
classification showed AUC values between FFDM-only and
DDSM-only results.

Incremental transfer learning using the DDSM dataset
DDSM dataset was used to further pretrain the base CNN

network (after originally being pretrained on the ImageNet data-
set), which was then fine-tuned with the FFDM dataset. Testing
data was also from the FFDM dataset. As can be seen in Fig. 4,
when compared with results using ImageNet pretrained model,
all scenarios showed an increase in performance using this incre-
mental transfer learning strategy, although not statistically
significant (P > 0.05). Malignant versus recalled-benign showed
the greatest increase in performance increasing from 0.75 to 0.80
(95% CI, 0.71–0.88, P ¼ 0.10) or 5%, followed by malignant
versus negative þ recalled-benign (AUC ¼ 0.70–0.74; 95% CI,
0.65–0.84; P ¼ 0.15). Malignant versus negative and recalled-
benign versus malignant þ negative both had their AUC increase
by 0.03, 0.74 to 0.77 (95% CI, 0.68–0.87; P ¼ 0.30) and 0.76 to
0.79 (95% CI, 0.70–0.87; P ¼ 0.31) respectively. Negative versus
recalled-benign and the triple classification (malignant vs. nega-
tive vs. recalled-benign) had the least increase (2%or 0.02 inAUC,
0.66–0.68 for triple classification), although negative versus
recalled-benign had the best performance of all the scenarios
[AUC ¼ 0.83 (95% CI 0.76–0.87; P ¼ 0.34) compared with 0.81
for ImageNet pretrained model].

Robustness analysis
In the robustness analysis using 10% and 15% data for

testing (Fig. 5), as expected, we see a slight decrease in the
AUC performance in almost all the scenarios compared with
those using 5% for testing. This is partly due to the reduced
amount of data for training. We also found that the perfor-
mances overall remained relatively stable, demonstrating the
robustness of our CNN models on a varied amount of data for
training and testing.

False negative analysis
The CNN models were further tested on correctly identifying

false negative cases/images. In our FFDM dataset, there are 34
interval cancer patients examined as false negative cases. We
retrained the CNN models (both the malignant vs. negative
scenario and the malignant vs. recalled-benign scenario) on
the FFDM dataset only and excluding those interval cancer
patients, and then tested these models by inputting the false
negative images to the models. Our results showed that 71.3%
(by the malignant vs. negative model) and 63.6% (by the malig-
nant vs. recalled-benignmodel) of the entire false negative images
can be correctly identified by our models. Furthermore, when
we retrained the CNN model by including 50% of the false
negative cases and used the rest of the unseen 50% for testing,
we see improved results, as expected, that is, 72.8% (by the
malignant vs. negative model) and 68.4% (by the malignant vs.
recalled-benign model) of the entire false negative images can be
correctly identified. The CNN models trained by other strategies
(i.e., experiments iii and iv in Section "Evaluation and statistical
analysis") also achieved similar performance (results not shown).

Discussion
In this study, we present a novel investigation showing that

automatic deep learning CNN methods can identify nuanced
mammographic imaging features to distinguish negative,
recalled-benign, and malignant images. We demonstrated that it
is feasible to discover subtle imaging distinction for six classifi-
cation scenarios on two different imaging datasets.

Among the six scenarios, negative versus recalled-benign
showed the best performance. This scenario also had the greatest
amount of data, which may have contributed to this improved
performance. The distinction in this scenario implies that certain
imaging features may result in recalled-benign images to be
recalled rather than being determined negative in the first place.
In general, the relatively higher AUCs in negative versus recalled-
benign and also malignant versus recalled-benign indicate that
there are imaging features unique to recalled-benign images that
the CNN-based deep learning can identify and potentially use to

Figure 4.

Comparison of performance results of
deep learning CNN models on
different pretraining strategies: using
original ImageNet pretrained model
versus using model pretrained on
ImageNet and DDSM dataset. All the
AUCs were results based on training
(fine-tuning) and testing on the
FFDM dataset.
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help radiologists in making better decisions on whether a patient
should be recalled or is more likely a false recall. The six classi-
fication scenarios were designed to reveal different aspects of
performance of the CNN models. It however remains to be
determined which scenario, especially in terms of binary-
classification or triple-classification, would be the most useful
andmeaningful choice in implementing a real-world CNNmodel
to help radiologists make recall decisions in a clinical setting.
There are noticeable variations in the classification performance
between binary and triple classification. This is something to be
further investigated in conjunction perhaps with reader studies to
evaluate their clinical effects in depth. Of note, with the ability of
the CNN model to distinguish between negative and malignant
images, the results indicate that deep learning can also perform
well in computer-aided diagnosis of breast cancer.

In terms of diagnosis (i.e., malignant vs. negative), literature
has reported a great reader variability of radiologists in sensi-
tivity and specificity in screening mammography (4). Using
previously reported radiologists' overall sensitivity 86.9% as
a reference threshold (4), our best deep learning model for
classifying malignant versus negative yields a specificity of 87%,

comparable with radiologists' overall specificity of 88.9%. This
is encouraging for the current scale of our datasets. With
enlarged datasets, we would expect further improvement in
our model's performance. In terms of our major motivation of
this work for reducing recalls, the lack of exact radiologists'
performance data in the literature prevents us from making a
reasonable comparison to our CNN models. We aim to further
investigate this with a reader study in future work.

Our CNN models demonstrated encouraging results in the
false negative analysis. Prevention of false negatives may be an
important reason for the high recall rate in current clinical
practice. By examining classifications of the interval cancer
cases, it indicates a potential of the CNN models to help
correctly identify as malignant a majority of false negative cases
from recalled-benign cases or from negative cases. This also
implies that some cases may be recalled due to certain imaging
indications besides the intention of preventing false negatives.
Further study into this issue on a larger cohort of false negative
cases is of great clinical importance.

In terms of dataset, we started with a digital mammography
dataset, FFDM, as it is the current standard screening

Figure 5.

Comparison of performance results
using varying amounts (5%, 10%,
and 15%) of testing data across all
models: FFDM-trained model (top
left); DDSM-trained model (top right);
FFDM þ DDSM–trained model
(bottom left); incrementally
pretrained CNN models in all
scenarios (bottom right).
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mammography examination. To demonstrate that our CNN
models can be used on a dataset from an independent institution,
we tested our models on the DDSM dataset. The DDSM alone
showed the best performance overall. This may be due to the
larger dataset size or something intrinsic to the characteristics of
the DDSM dataset. When the FFDM and DDSM datasets were
combined, the overall improved performance was observed in
comparison with using FFDM alone. This indicates that our CNN
model is robust to an external dataset and its performance can be
further improved by including additional data.

Because the DDSM dataset is based on digitized film mam-
mography images and current clinical practice has moved to
digital mammography, we wanted to determine the best use of
the DDSM to improve results on the FFDM dataset. The most
straightforward way was simply to combine it with the FFDM
datasets, which improved results when testing on the combined
datasets.More importantly, we demonstrated a novel approach of
incremental transfer learning using the DDSM dataset, which
enhanced the performance consistently on the FFDM dataset in
all six scenarios. The incremental transfer learning we used was a
two-phase transfer learning approach using two different datasets
consecutively (i.e., ImageNet then DDSM). The improvement
may be due to using DDSM to fine-tune the model's weights
rather than directly in training, allowing the noise from being a
different type ofmammography dataset to be dampened. It could
also be related to the strengths of DDSM as a medical imaging
modality that is close to the target modality (i.e., digital mam-
mography) infine-tuning theweights learned frompretraining on
the nonmedical imaging dataset of ImageNet. Many studies have
shown the benefit of transfer learning in medical domains with
limited data (32).Our results in this study provide deeper insights
in developing more optimized transfer learning strategies. How-
ever, the incremental transfer learning and the observationsmade
here needs to be evaluated by further analyses and comparative
studies in future work.

In comparing the various deep/transfer learning strategies, we
show that adding/mixing a larger independent dataset, even if it is
not exactly the same imaging modality, helped improve the CNN
models in our classification tasks. Furthermore, using this kind of
additional dataset in an incremental transfer learning approach
has shown a trend of boosted model performance. Although the
AUC increases are not statistically significant, additional data will
help further evaluate this finding. As to mixing two datasets or
using transfer learning, it depends on the specific scenarios and
their actual classification performance. Although we have shown
encouraging results in this study, we believe this is still an open
question meriting further investigation.

In traditional computer-aided detection or diagnosis, themod-
els are usually based on predefined features, which require pre-
emptive determination of which features will work best for the
task at hand. In contrast, with the deep learning method we
utilized, predefinition of the imaging features is not necessary
and are learned automatically from labeled data. Deep learning
allows nuanced features to be determined by the learning algo-
rithm for the targeted task,where intrinsic features thatmaynot be
identifiable by human visual assessment can be automatically
identified and used for imaging interpretation. This study illus-
trated the encouraging effects of such automatic feature identifi-
cation by deep learning.

Our study has some limitations. Although we have two
independent datasets, additional datasets, especially another

digital mammography dataset, can further bolster the evalua-
tion of the deep learning models. We are currently trying to
obtain external datasets for such experiments. Also, it is still not
clear why the DDSM performed substantially better than the
FFDM dataset; this requires further exploration. Of note, digital
breast tomosynthesis is increasingly being used in clinical
practice, and it has been shown to reduce recall rates (33);
thus, incorporation of tomosynthesis data in our study will be
important future work. Although we utilized AlextNet CNN
structures in this study, comparison with other network struc-
tures such as Residual Network (34), VGG (35), or GoogLeNet
(36) will be useful to gain further insights on the potential of
deep learning.

Finally, it would be useful to present to radiologists the
subtle imaging features found by our CNN models in distin-
guishing the different groups. However, we are not yet able to
clearly visualize and clinically interpret what the identified
nuanced imaging features are for recalled but benign images
or for the other classification categories. At this phase, deep
learning is often referred to as a "black-box" due to the lack
of interpretability of the identified features. A current area
of investigation we are exploring is to visualize the CNN-
identified features to be more intuitively perceived by radiol-
ogists. The complexity of deep learning network structures,
parameters, and data evolving process across different network
layers, however, make feature visualization very complicated,
requiring in-depth research. Further technical advancement in
this active research area is expected to contribute to addressing
this important issue.

In summary, we showed that the three different imaging
reading categories (malignant, negative, and recalled-benign)
could be distinguished using our deep learning–based CNN
models. We believe our study holds great potential to incor-
porate deep learning–based artificial intelligence into clinical
workflow of breast cancer screening to improve radiologist
interpretation of mammograms, ultimately contributing to
reducing false recalls.
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